Flavour-selective localization in interacting lattice fermions via SU(N) symmetry breaking.

2021 
A large repulsion between particles in a quantum system can lead to their localization, as it happens for the electrons in Mott insulating materials. This paradigm has recently branched out into a new quantum state, the orbital-selective Mott insulator, where electrons in some orbitals are predicted to localize, while others remain itinerant. We provide a direct experimental realization of this phenomenon, that we extend to a more general flavour-selective localization. By using an atom-based quantum simulator, we engineer SU(3) Fermi-Hubbard models breaking their symmetry via a tunable coupling between flavours, observing an enhancement of localization and the emergence of flavour-dependent correlations. Our realization of flavour-selective Mott physics opens the path to the quantum simulation of multicomponent materials, from superconductors to topological insulators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []