Noise Rejection and Detection of Partial Discharges under Repetitive Impulse Supply Voltage

2019 
Partial discharge (PD) detection is a fundamental tool for the design and diagnosis of insulation systems, particularly organic materials that must operate throughout their life without PD. While the methods for PD measurements under sinusoidal supply voltage are well-established, the same does not hold under repetitive-pulse voltage waveforms, such as those provided by inverters. Electromagnetic noise generated by electronic switch commutation in inverters can overlap with PD pulses, making it difficult to measure, separate from noise, and identify PD. This is particularly more cumbersome when fast rise-time switches are employed. To address these issues, this paper investigates methods to detect PD pulses on enameled wires under repetitive impulsive voltages with different rise times of 60, 500, and 1000 ns, proposing techniques which allow separation of PD from noise even when they overlap in time and frequency domains. This paper employs a time-domain approach using standard deviation curve acquired from a set of measurements to discriminate PD from repetitive commutation disturbance. These techniques can be implemented to achieve unsupervised noise rejection, which would be an important goal for both offline and online PD testing. The proposed approach is validated successfully through tests carried out on a low-voltage motor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    10
    Citations
    NaN
    KQI
    []