Electrochemical Promotion of Ru Nanoparticles deposited on a Proton Conductor Electrolyte during CO2 Hydrogenation

2020 
Abstract Recycling CO2 into a carbon-neutral source is a beneficial approach in reducing non-renewable energy sources. Herein, the electrochemical promotion of catalysis (EPOC) has been exploited to enhance the catalytic activity of Ru nanoparticles (0.7-1 nm) deposited on the proton conductor yttria-doped barium zirconate (BZY), as free-standing nanoparticles and supported on Co3O4 semiconductor, for CO2 hydrogenation. Under 250-450 °C and atmospheric pressure, both methanation and reverse water-gas shift (RWGS) reaction take place simultaneously over the Ru nanoparticles with a superior selectivity to CO. Under anodic polarization, free-standing Ru nanoparticles displayed an increase in CH4 and a decrease in CO production, while the opposite effect was observed under cathodic polarization. Ru supported on Co3O4 displayed a superior catalytic activity mostly due to enhanced metal-support interactions. The electronic effects induced by the pairing of Co3O4 and BZY resulted in a new approach to EPOC applications that brings it closer to industrial application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    9
    Citations
    NaN
    KQI
    []