Scanning Super-resolution Imaging in Enclosed Environment by Laser Tweezer Controlled Superlens
2020
Super-resolution imaging using microspheres has attracted tremendous scientific attention recently because it has managed to overcome the diffraction limit and allowed direct optical imaging of structures below 100 nm without the aid of fluorescent microscopy. To allow imaging of specific areas on the surface of samples, the migration of the microspheres to specific locations on two-dimensional (2D) planes should be controlled to be as precise as possible. The common approach involves the attachment of microspheres on the tip of a probe. However, this technology requires additional space for the probe and could not work in an enclosed environment, e.g., in a microfluidic enclosure, thereby, reducing the range of potential applications for microlens-based super-resolution imaging. Herein, we explore the use of laser trapping to manipulate microspheres to achieve super-resolution imaging in an enclosed microfluidic environment. We have demonstrated that polystyrene microsphere lenses could be manipulated to move along designated routes to image features which are smaller than the optical diffraction limit. For example, a silver nanowire (AgNW) with a diameter of 90 nm could be identified and imaged. In addition, a mosaic image could be constructed by fusing a sequence of images of a sample in an enclosed environment. Moreover, we have shown that it is possible to image with this method Escherichia coli bacteria attached on the surface of an enclosed microfluidic device. This technology is expected to provide additional super-resolution imaging opportunities in enclosed environments, including microfluidic, lab-on-a-chip, and organ-on-a-chip devices.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
2
Citations
NaN
KQI