Polydisperse Spindle-Shaped ZnO Particles with Their Packing Micropores in the Photoanode for Highly Efficient Quasi-Solid Dye-Sensitized Solar Cells

2010 
In this paper, a novel hierarchically structured ZnO photoanode for use in quasi-solid state dye-sensitized solar cells (DSCs) is presented. The film is composed of polydisperse spindle-shaped ZnO particles that are prepared through direct precipitation of zinc acetate in aqueous solution. Without additional pore-forming agents, the microporous structure is well constructed through the packing of polydisperse ZnO particles. In the film, small ZnO particles are able to improve interparticle connectivity and offer a large internal surface area for sufficient dye-adsorption; on the other hand, particles of larger size can enhance the occurrence of light-scattering and introduce micropores for the permeation of quasi-solid state electrolytes. Meanwhile, morphologies, particle size, and specific areas of the products are controlled by altering the reactant concentration and synthetic temperature. Combined with a highly viscous polymer gel electrolyte, a device based on this ZnO photoanode shows high conversion efficiencies, 4.0% and 7.0%, under 100 and 30 mW cm -2 illumination, respectively. Finally, the unsealed device is demonstrated to remain above 90% of its initial conversion efficiency after 7 days, showing excellent stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    30
    Citations
    NaN
    KQI
    []