Sublattice spin reversal and field induced $Fe^{3+}$ spin-canting across the magnetic compensation temperature in $Y_{1.5}Gd_{1.5}Fe_{5}O_{12}$ rare-earth iron garnet
2021
In the present work $Fe^{3+}$ sublattice spin reversal and $Fe^{3+}$ spin-canting across the magnetic compensation temperature ($T_{Comp}$) are demonstrated in polycrystalline $Y_{1.5}Gd_{1.5}Fe_{5}O_{12}$ (YGdIG) by means of in-field $^{57}Fe$ M$\ddot{o}$ssbauer spectroscopy measurements. Corroborating in-field $^{57}Fe$ M$\ddot{o}$ssbauer measurements, both $Fe^{3+}$ & $Gd^{3+}$ sublattice spin reversal has also been manifested with x-ray magnetic circular dichroism (XMCD) measurement in hard x-ray region. Moreover from in-field $^{57}Fe$ M$\ddot{o}$ssbauer measurements, estimation and analysis of effective internal hyperfine field ($H_{eff}$), relative intensity of absorption lines in a sextet elucidated unambiguously the signatures of $Fe^{3+}$ spin reversal, their continuous transition and field induced spin-canting of $Fe^{3+}$ sublattices across $T_{Comp}$. Further, Fe K- (Gd $L_{3}$-) edge XMCD signal is observed to consist of additional spectral features, those are identified from $Gd^{3+}$ ($Fe^{3+}$) magnetic ordering, enabling us the extraction of both the sublattices ($Fe^{3+}$ & $Gd^{3+}$) information from a single edge analysis. The evolution of the magnetic moments as a function of temperature for both magnetic sublattices extracted either at the Fe K- or Gd $L_3$-edge agree quite well with values that are extracted from bulk magnetization data of YGdIG and YIG ($Y_{3}Fe_{5}O_{12}$). These measurements pave new avenues to investigate how the magnetic behavior of such complex system acts across the compensation point.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
29
References
0
Citations
NaN
KQI