Digital light processing-based 3D printing of polytetrafluoroethylene solid microneedle arrays

2021 
This study evaluated the structural and skin penetration properties of solid microneedle arrays made by digital light processing-based 3D printing of polytetrafluoroethylene. Confocal laser scanning microscopy and scanning electron microscopy revealed that the microneedles exhibited uniform heights. Raman spectroscopy, X-ray photoelectron spectroscopy, nanoindentation, and contact angle results indicated that the composition, carbon–fluorine bonding, reduced elastic modulus, and contact angle values of the 3D-printed polytetrafluoroethylene corresponded with those of bulk polytetrafluoroethylene, respectively. Methyl blue was used to evaluate the human skin penetration functionality of the microneedle array. Our results indicate that digital light processing is appropriate for manufacturing polytetrafluoroethylene medical devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []