Fatigue behavior of aluminum/magnesium matrix composites and nanocomposites

2020 
Abstract Light-weight high-strength composites (particularly with aluminum and magnesium base alloys) have principal applications in a wide variety of fields ranging from automotive and aerospace structures to medical and energy applications wherein the materials undergo both static and dynamic (fatigue) loading conditions. Conventional metal matrix composites (MMCs), i.e. those filled by micro-sized reinforcements, have usually poor ductility and insufficient mechanical performance made them, therefore, unreliable to be used in some critical applications. Instead, those composites strengthen by nano-sized reinforcing agents, namely metal matrix nano-composites (MMNCs), have newly been developed in order to boost the mechanical properties. The current paper aims to study the fatigue behavior of the MMCs with a particular attention on recent investigations made on MMNCs. It is believed that the materials selection, microstructural features, manufacturing and processing parameters, etc. have a dominant influence on the fatigue response of MMNCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    5
    Citations
    NaN
    KQI
    []