Spin- and Voltage-dependent emission from Intra- and Intermolecular TADF OLEDs

2020 
Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near-orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, we investigate 4,4'-(9H,9'H-[3,3'-bicarbazole]-9,9'-diyl)bis(3-(trifluoromethyl) benzonitrile) (pCNBCzoCF3), which shows intramolecular TADF but can also form exciplex states in combination with 4,4',4''-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA). We observed that orange emitting exciplex-based OLEDs also generate a sky-blue emission from the intramolecular emitter with an intensity that can be voltage-controlled. The main drawback of all-optical methods and electro-optical device characterization is their lack of sensitivity for the spin degree of freedom as long as no magnetic field is applied. In this work, we use electroluminescence detected magnetic resonance (ELDMR) to study the thermally activated spin-dependent triplet to singlet up-conversion in operating devices. Thereby, we can investigate intermediate excited states involved in OLED operation and derive the corresponding activation energy for both, intra- and intermolecular based TADF. Furthermore, we can give a lower estimate for the extent of the triplet wavefunction to be >1.2 nm. Photoluminescence detected magnetic resonance (PLDMR) reveals the population of molecular triplets in optically excited thin films. Overall, our findings allow us to draw a comprehensive picture of the spin-dependent emission from intra- and intermolecular TADF OLEDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []