In-situ study of creep in Sn-3Ag-0.5Cu solder.

2020 
The creep behaviour and microstructural evolution of a Sn-3Ag-0.5Cu wt.% sample with a columnar microstructure have been investigated through in-situ creep testing under constant stress of 30 MPa at 298 K. This is important, as 298 K is high temperature within the solder system and in-situ observations of microstructure evolutions confirm the mechanisms involved in deformation and ultimately failure of the material. The sample has been observed in-situ using repeat and automatic forescatter diode and auto electron backscatter diffraction imaging. During deformation, polygonisation and recrystallisation are observed heterogeneously with increasing strain, and these correlate with local lattice rotations near matrix-intermetallic compound interfaces. Recrystallised grains have either twin or special boundary relationships to their parent grains. The combination of these two imaging methods reveal one grain (loading direction, LD, 10.4 {\deg} from [100]) deforms less than the neighbour grain 2 (LD 18.8{\deg} from [110]), with slip traces in the strain localised regions. In grain 1, (1-10)[001] slip system are observed and in grain 2, (1-10)[-1-11]/2 and (110)[-111]/2 slip systems are observed. Lattice orientation gradients build up with increasing plastic strain and near fracture recrystallisation is observed concurrent with fracture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []