Evolution of Strength Parameters for Sandstone Specimens during Triaxial Compression Tests

2021 
Despite the lack of test data of the coefficient of pressure sensitivity and the shearing cohesion k, the Drucker–Prager criterion is commonly applied for numerical analyses of geotechnical engineering. To bridge the gap between the wide application and insufficient knowledge of strength parameters of the Drucker–Prager criterion, this study presents experimentally calibrated strength parameters of this criterion for the first time. This paper proposes a new method to measure and k in the Drucker–Prager criterion. The square root of the second invariant of the deviatoric stress tensor is linearly fitted with the first invariant of the stress tensor in the stress space. The parameters and c in the Mohr–Coulomb criterion and and k in the Drucker–Prager criterion are calibrated to the same set of triaxial compression tests of sandstones. With these testing results, five pairs of conversion formulae (which are most commonly used in the literature) are examined and the most appropriate pair of conversion formulae is identified. With parameters indicating cohesive strength (c and k) and parameters indicating frictional strength ( and ), the evolutions of different strength components are compared with those in the cohesion-weakening friction-strengthening model. With an increase in plastic deformation, the cohesive strength parameters c and k firstly increase to a peak value and then decrease. The frictional strength parameters and gradually increase at a decreasing rate after the initial yield point.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []