Evidence for antibiotic-mediated endotoxin release as a contributing factor to lethality in experimental gram-negative sepsis.

1996 
Abstract Endotoxic lipopolysaccharide (LPS) is a major constituent of the outer membrane of the Gram-negative microbe. Following its release from the bacterium, LPS serves as a potent proinflammatory stimulus by interacting with humoral and cellular mediator systems to stimulate production of an array of inflammatory molecules. Cell-wall active antibiotics are known to promote endotoxin release. To assess the contribution of antibiotic-induced endotoxin release in the pathogenesis of Gram-negative sepsis, we have developed several experimental models in which mice have been pretreated with various agents to make them sensitive to Gram-negative (E. coli, pseudomonas) infection and/or the lethal effects of endotoxin. For the former, both cyclophosphamide (which renders mice neutropenic) and the reversible hepatotoxin D-galactosamine (D-gal) have been used. D-gal also sensitized mice to the lethal effects of LPS. Infected mice treated with cell-wall active antibiotics are protected approximately five- to 10-fold (as assessed by increases in LD50) if they are sensitive to LPS lethality (D-gal treatment) but 500-fold if they are resistant to LPS lethality. Importantly, different antibiotics that have been documented to cause different amounts of endotoxin release in vitro also differ in their protective efficacy in vivo. Thus, imipenem, which causes relatively low endotoxin release, is significantly more protective (8-fold) than ceftazidime or meropenem (3-fold, P < 0.005) under conditions of equivalent MICs. Lethality data correlate well with circulating levels of interleukin-6 (Il-6) in vivo and with induction of Il-6 in ex vivo studies in which anticoagulated mouse blood is incubated with bacteria and antibiotics. Finally, antiendotoxin agents manifest additional levels of protection in vivo under conditions in which antibiotics alone are not protective. Collectively, these results strongly implicate antibiotic-induced endotoxin release as a significant contributing factor in experimental Gram-negative sepsis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    41
    Citations
    NaN
    KQI
    []