Coercivity results of a modified Q 1-finite volume element scheme for anisotropic diffusion problems

2018 
In this paper, we study a so-called modified Q 1-finite volume element scheme that is obtained by employing the trapezoidal rule to approximate the line integrals in the classical Q 1-finite volume element method. A necessary and sufficient condition is obtained for the positive definiteness of a certain element stiffness matrix. Based on this result, a sufficient condition is suggested to guarantee the coercivity of the scheme on arbitrary convex quadrilateral meshes. When the diffusion tensor is an identity matrix, this sufficient condition reduces to a geometric one, covering some standard meshes, such as the traditional h 1+γ -parallelogram meshes and some trapezoidal meshes. More interesting is that, this sufficient condition has explicit expression, by which one can easily judge on any diffusion tensor and any mesh with any mesh size h > 0. The H 1 error estimate of the modified Q 1-finite volume element scheme is obtained without the traditional h 1+γ -parallelogram assumption. Some numerical experiments are carried out to validate the theoretical analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    5
    Citations
    NaN
    KQI
    []