Radiobiology of ultrasoft X rays. I. Cultured hamster cells (V79)

1987 
Ultrasoft X rays (approximately less than keV) provide a useful probe for the study of the physical parameters associated with the induction of biological lesions because the spatial scale of their energy depositions is of nanometer dimensions, comparable to that of critical structures within the cell. We report on cell-killing experiments using cultured hamster cells (V79) exposed to carbon K (0.28 keV), aluminum K (1.5 keV), copper K (8.0 keV), and 250 kVp X rays, under oxic and hypoxic conditions, and as a function of cell-cycle phase. Our principal results are: RBE increases with decreasing X-ray energy; OER decreases with decreasing X-ray energy; and cell-cycle response is similar for all X-ray energies. Our RBE results confirm earlier observations using ultrasoft X rays on mammalian cells. The shapes of fitted curves through the data for each energy are statistically indistinguishable from one another, implying that the enhanced effectiveness is purely dose modifying. The results reported herein generally support the view that single-track effects of radiation are predominantly due to very local energy depositions on the nanometer scale, which are principally responsible for observed radiobiological effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    93
    Citations
    NaN
    KQI
    []