Cellulose nanocrystals produced using recyclable sulfuric acid as hydrolysis media and their wetting molecular dynamics simulation.

2021 
Abstract Cellulose nanocrystals (CNCs) were successfully produced with good nanoscales and dispersibility, using a recycled sulfuric acid (H2SO4) hydrolysis process. This method, at the cost of an overall 25% increase in the hydrolysis time, could significantly reduce the dosage of H2SO4 by approximately 40% without affecting the per-batch yield and performance of CNCs. The obtained CNCs with an average diameter of 6.0–6.5 nm and an average length of 126–134 nm, were successfully applied in the preparation of oil-in-water (O/W) Pickering emulsions via high-pressure homogenization. The emulsions exhibited good storage stability when the concentration of CNC was 1.0 wt%. Further, understanding the wetting behaviors of surface modified CNCs with solvent is critical for the functional designing of Pickering emulsion. Hence, we gained insights into the wetting of hydrophobic and hydrophilic surfaces of sulfate modified CNCs with water and organic solvent (hexadecane) droplets, using molecular dynamic simulation. The results showed that both surfaces had hydrophilic as well as lipophilic properties. Although the sulfate-grafted surface was more hydrophilic than unmodified CNC, substantial local wetting heterogeneities appeared for both solvents. It provides a deeper understanding of the interfacial interactions between modified CNCs and solvent molecules at the molecular level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    2
    Citations
    NaN
    KQI
    []