치주질환 예측을 위한 치과 X-선 영상에서의 초해상화 알고리즘 적용 가능성 연구

2021 
치주질환의 조기 진단률 및 예측 정확도 향상을 위한 X-선 영상 분석은 매우 중요한 분야이다. 이러한 치과 X-선 영상의 화질 개선을 위한 인공 지능 기반의 알고리즘 개발 및 적용에 관한 연구는 전 세계적으로 널리 수행 중이다. 따라서 본 연구의 목표는 치주질환 예측을 위한 치과 X-선 영상에서의 초해상화 알고리즘의 모델링 및 적용 가능성에 관하여 평가하는 것이다. 초해상화 알고리즘은 convolution layer와 ReLU를 기반으로 구성하였고, 저해상도 영상을 2배로 업샘플링 한 영상을 입력으로 사용하였다. 딥러닝 훈련을 위해 사용한 치과 X-선 데이터는 1,500장을 사용하였다. 영상의 정량적 평가는 2가지 영상의 비교를 통해 유사도를 측정할 수 있는 인자인 root mean square error와 structural similarity를 사용하였다. 이와 더불어 최근에 개발된 no-reference 기반으로 사용되는 natural image quality evaluator 와 blind/referenceless image spatial quality evaluator를 추가적으로 분석하였다. 결과적으로 기존에 사용되던 bicubic 기반의 업샘플링 기법을 사용하였을 때에 비하여 제안하는 방법이 치과 X-선 영상에서 평균적으로 유사도와 no-reference 기반의 평가 인자가 각각 1.86 그리고 2.14배 향상됨을 확인하였다. 결론적으로 치주질환의 예측을 위한 초해상화 알고리즘의 치과 X-선 영상에서의 유용성을 증명하였고 향후 다양한 분야에서의 적용 가능성이 높을 것으로 기대된다.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []