The impact of hemodialysis on erythrocyte membrane cytoskeleton proteins.

2015 
BACKGROUND: Hemodialysis (HD) is one of the methods of renal replacement therapy, but it also contributes to an increase in oxidative stress. Hemodialysis leads to changes in the erythrocyte cytoskeleton structure, whilst the presence of glucose in the dialysis fluid which activates the pentose phosphate pathway contributes to the intensification of oxidative stress. Available literature lacks reports on the effect of glucose in the dialytic fluid on the composition of proteins of the cell membrane cytoskeleton. MATERIAL/METHODS: Red blood cells for this analysis were collected from patients with chronic renal failure treated with hemodialysis using both glucose-containing and glucose-free dialysis fluid. Following the preparation of membranes, the electrophoretic separation of proteins was performed in denaturing conditions according to Laemmli. The level of tryptophan in membranes was determined by spectrofluorimetry, whilst the activity of glucose-6-phosphate dehydrogenase was determined by measuring the reduction of oxidated NADP. RESULTS: Hemodialysis in both groups of patients resulted in a statistically significant reduction of tryptophan as an oxidative stress indicator when compared to the control group. Moreover, the activity of glucose-6-phosphate dehydrogenase in the group of patients was higher than in the control group, and following the HD procedure it decreased, which may have been caused by a reduced concentration of dialyzed glucose. The HD procedure affects the structure of the erythrocyte membrane cytoskeleton, which is reflected in the concentration changes in individual proteins and in their mutual relationships corresponding to vertical and horizontal interactions stabilizing the structure of the erythrocyte membrane cytoskeleton. These changes may contribute to the shortening of cell lifespan.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []