Flat-space picture of gravity versus General Relativity: A Precision test for present ether-drift experiments

2007 
Modern ether-drift experiments in vacuum could in principle detect the tiny refractive index that, in a flat-space picture of gravity, is appropriate for an apparatus placed on the Earth’s surface. In this picture, in fact, if there were a preferred reference frame, light on the Earth would exhibit a slight anisotropy with definite quantitative differences from General Relativity. By re-analyzing the data published by two modern experiments with rotating optical resonators, and concentrating on the part of the signal that should be free of spurious systematic effects, we have found evidences that would support the flat-space scenario.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    2
    Citations
    NaN
    KQI
    []