Characterization of A 3.3 kV Si-SiC Hybrid Power Module in Half-bridge Topology for Traction Inverter Application

2020 
A state-of-the-art 3.3-kV/450-A hybrid power module for the next generation traction inverter of rolling stock is reported in this paper, combining the silicon (Si) insulated-gate bipolar transistor (IGBT) and silicon carbide Schottky barrier diodes (SBDs) chips. Compared with the existing hybrid technology at the same voltage level, this module is characterized by a half-bridge topology, in which 6 IGBT and 12 SBD chips are integrated in each switch. The outnumbering of the diodes represents a promising mitigation to the low availability of SBDs at this voltage level. Both static and dynamic test of this module and an equivalent Si-based module are carried out comparatively. Apart from describing the features of compactness, low-inductance, and good current distribution among chips, this module is characterized by low turn- on current overshooting and turn- on loss of IGBTs, negligible diode reverse recovery time and loss, as well as flexible allowance of IGBT turn- on current rising rate $\boldsymbol{dI}/\boldsymbol{dt}$ . A parameterized study is carried out to benchmark the advantage of this new topology. Based on the experimental results, the performance of the hybrid module in a three-phase traction inverter circuit is also evaluated by means of electro-thermal simulation. The hybrid module distinguishes itself by describing much lower power loss and junction temperature than its Si-based counterpart.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    2
    Citations
    NaN
    KQI
    []