Strain-Engineered van der Waals Interfaces of Mixed-Dimensional Heterostructure Arrays

2019 
van der Waals (vdWs) heterostructures have provided a platform for nanoscale material integrations and enabled promise for use in optoelectronic devices. Because of the ultrastrength of two-dimensional materials, strain engineering is considered as an effective way to tune their band structures and further tailor the interface performance of vdWs heterostructures. However, the less-constrained vdWs interfaces make the traditional strain technique via lattice-mismatched growth infeasible. Here, we report a strategy to construct mixed-dimensional heterostructure arrays with periodically strain-engineered vdWs interfaces utilizing one-dimensional semiconductor-induced nanoindentation. Using monolayer MoS2 (1L-MoS2)/ZnO heterostructure arrays as a model system, we demonstrate inhomogeneous built-in strain gradient at the heterointerfaces ranging from 0 to 0.6% tensile. Through systematic optical characterization of the hybrid structures, we verify that strain can improve the interfacial charge transfer effici...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    39
    Citations
    NaN
    KQI
    []