Turbulent heating due to magnetic reconnection

2018 
Dissipation of plasma turbulent energy is a phenomenon having significant implications for the heating of the solar corona and solar wind. While processes involving linear wave damping, stochastic heating, and reconnection have been postulated as contributors to heating mechanisms, the relative role that they play is not currently understood. In this manuscript, we establish a theoretical framework for applying reconnection heating predictions to turbulent systems. Kinetic particle-in-cell (PIC) simulations are used to study heating due to reconnection, and these results are then adapted to a turbulent medium. First, the factors controlling the heating of plasmas in reconnection exhausts are examined using laminar reconnection simulations; predictions for heating are determined which require only the plasma conditions just upstream of the reconnection diffusion region as input. The laminar predictions are then applied to PIC simulations of turbulence. Key assumptions are: (1) the plasma conditions just up...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    39
    Citations
    NaN
    KQI
    []