Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink

2017 
Abstract A Cu complex ink was synthesized using copper formate as a precursor and its potential for laser patterning was investigated. The Cu ink was spin-coated onto a substrate and the coated film was space-selectively sintered using a nanosecond-pulsed ultraviolet laser. The unexposed Cu ink could be removed from the film by rinsing it with the dispersing agent used to synthesize the ink, disclosing a conductive Cu pattern. A minimum resistivity of 8.46×10 −5  Ω cm was obtained for the Cu lines with 10–20 µm widths. The feasibility of this method for metallization was demonstrated by fabricating a complex Cu electric circuit on an indium tin oxide-coated glass substrate. The selective laser sintering approach provides a simple, cost-effective alternative to conventional lithography for the production of electrode or metallization patterns.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    20
    Citations
    NaN
    KQI
    []