FedServing: A Federated Prediction Serving Framework Based on Incentive Mechanism

2020 
Data holders, such as mobile apps, hospitals and banks, are capable of training machine learning (ML) models and enjoy many intelligence services. To benefit more individuals lacking data and models, a convenient approach is needed which enables the trained models from various sources for prediction serving, but it has yet to truly take off considering three issues: (i) incentivizing prediction truthfulness; (ii) boosting prediction accuracy; (iii) protecting model privacy. We design FedServing, a federated prediction serving framework, achieving the three issues. First, we customize an incentive mechanism based on Bayesian game theory which ensures that joining providers at a Bayesian Nash Equilibrium will provide truthful (not meaningless) predictions. Second, working jointly with the incentive mechanism, we employ truth discovery algorithms to aggregate truthful but possibly inaccurate predictions for boosting prediction accuracy. Third, providers can locally deploy their models and their predictions are securely aggregated inside TEEs. Attractively, our design supports popular prediction formats, including top-1 label, ranked labels and posterior probability. Besides, blockchain is employed as a complementary component to enforce exchange fairness. By conducting extensive experiments, we validate the expected properties of our design. We also empirically demonstrate that FedServing reduces the risk of certain membership inference attack.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []