Application of Near-Infrared Spectroscopy in Real-Time Monitoring of Product Attributes of Ribbed Roller Compacted Flakes

2013 
This study assessed the utility of near-infrared (NIR) spectroscopy for the real-time monitoring of content uniformity and critical quality attributes (tensile strength, Young’s modulus, and relative density) of ribbed roller compacted flakes made by axially corrugated or ribbed rolls. A custom-built setup was used to capture off-line NIR spectra from the flakes containing micronized chlorpheniramine maleate, microcrystalline cellulose, lactose, and magnesium stearate. The partial least square regression method was employed to build calibration models from these off-line NIR spectra using experimental design and validated using test set validation. During calibration model development, various factors, such as spectral acquisition mode, probe positioning, spectral preprocessing method, and beam size, were investigated to improve the prediction ability of the models. The statistical results obtained for calibration models and their validation revealed that dynamic spectral acquisition and proper probe positioning were very crucial to minimize the incorporation of variability in NIR spectra resulting from the flake’s undulation. Calibration and validation statistics also suggested the importance of selecting appropriate spectral preprocessing method and beam size. In this study, best calibration models resulted from standard normal variate followed by first derivative preprocessed dynamic spectra captured using beam size ~1.2 mm. Best calibration models constructed from off-line NIR spectra were used in real-time analysis of flake attributes. Finally, adequacy of best calibration models was established from real-time prediction results. Overall, with the proposed setup, it was possible to monitor the roller compaction process in real time for various properties associated with the ribbed flakes in a rapid, efficient, and nondestructive manner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    18
    Citations
    NaN
    KQI
    []