Chemically reversible isomerization of inorganic clusters

2019 
Structural transformations in molecules and solids have generally been studied in isolation, whereas intermediate systems have eluded characterization. We show that a pair of cadmium sulfide (CdS) cluster isomers provides an advantageous experimental platform to study isomerization in well-defined, atomically precise systems. The clusters coherently interconvert over an ~1–electron volt energy barrier with a 140–milli–electron volt shift in their excitonic energy gaps. There is a diffusionless, displacive reconfiguration of the inorganic core (solid-solid transformation) with first order (isomerization-like) transformation kinetics. Driven by a distortion of the ligand-binding motifs, the presence of hydroxyl species changes the surface energy via physisorption, which determines “phase” stability in this system. This reaction possesses essential characteristics of both solid-solid transformations and molecular isomerizations and bridges these disparate length scales.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    30
    Citations
    NaN
    KQI
    []