Critical parameters for reaction–diffusion equations involving space–time fractional derivatives

2020 
We will look at reaction–diffusion type equations of the following type, ∂tβV(t,x)=-(-Δ)α/2V(t,x)+It1-β[V(t,x)1+η].We first study the equation on the whole space by making sense of it via an integral equation. Roughly speaking, we will show that when 0 η c, non-trivial global solutions do exist. The critical parameter η c is shown to be 1η∗ where η∗:=supa>0{supt∈(0,∞),x∈Rdta∫RdG(t,x-y)V0(y)dy<∞}and G(t,x) is the heat kernel of the corresponding unforced operator. V is a non-negative initial function. We also study the equation on a bounded domain with Dirichlet boundary condition and show that the presence of the fractional time derivative induces a significant change in the behavior of the solution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    4
    Citations
    NaN
    KQI
    []