Asymmetric Cuts: Joint Image Labeling and Partitioning

2014 
For image segmentation, recent advances in optimization make it possible to combine noisy region appearance terms with pairwise terms which can not only discourage, but also encourage label transitions, depending on boundary evidence. These models have the potential to overcome problems such as the shrinking bias. However, with the ability to encourage label transitions comes a different problem: strong boundary evidence can overrule weak region appearance terms to create new regions out of nowhere. While some label classes exhibit strong internal boundaries, such as the background class which is the pool of objects. Other label classes, meanwhile, should be modeled as a single region, even if some internal boundaries are visible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    12
    Citations
    NaN
    KQI
    []