Confocal Laser Microscope Scanning Applied To Three-Dimensional Studies Of Biological Specimens.

1987 
The depth-discriminating property of confocal laser microscope scanners can be used to record the three-dimensional structure of specimens. A number of thin sections (approx. 1 μm thick) can be recorded by a repeated process of image scanning and refocusing of the microscope. We have used a confocal microscope scanner in a number of feasibility studies to investigate its possibilities and limitations. It has proved to be well suited for examining fluorescent specimens with a complicated three-dimensional structure, such as nerve cells. It has also been used to study orchid seeds, as well as cell colonies, greatly facilitating evaluation of such specimens. Scanning of the specimens is performed by a focused laser beam that is deflected by rotating mirrors, and the reflected or fluorescent light from the specimen is detected. The specimen thus remains stationary during image scanning, and is only moved stepwise in the vertical direction for refocusing between successive sections. The scanned images consist of 256*256 or 512*512 pixels, each pixel containing 8 bits of data. After a scanning session a large number of digital images, representing consecutive sections of the specimen, are stored on a disk memory. In a typical case 200 such 256*256 images are stored. To display and process this information in a meaningful way requires both appropriate software and a powerful computer. The computer used is a 32-bits minicomputer equipped with an array processor (FPS 100). The necessary software was developed at our department.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []