Phase and microstructure evolutions in LC3 binders by multi-technique approach including synchrotron microtomography

2021 
Abstract Limestone Calcined Clay Cements, LC3, are attracting a lot of attention as it is possible to reduce the clinker factor by 50%, which means a cement CO2 footprint reduction of 40%. This is compatible with maintaining the mechanical strength performances after one week, if the kaolinite contents of the raw clays are above ~40 wt%. Durability properties are also maintained or even enhanced. Here, it is used a multi-technique approach to understand the phase and microstructure developments. From the thermal analysis, partial limestone reactivity is proven. Chiefly, high-resolution synchrotron microtomography has been employed, for the first time in these systems, to characterize their microstructures. The measured total porosities, within our 1 μm spatial resolution (voxel size 0.32 μm), were 16.6, 10.0 and 2.4 vol% at 7, 8 and 60 days of hydration, respectively. Pore connectivity strongly decreases with hydration time due to the chemical reactions producing new phases filling the pores. The 6-connected porosity fractions were 92, 78, and 9% at 7, 8 and 60 days. The reactions filling the pores were investigated by Rietveld quantitative phase analysis and 27Al MAS-NMR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []