Analysis of Factors Influencing Hospitals’ Implementation of a Green E-Procurement System Using a Cloud Model
2019
Currently, the green procurement activities of private hospitals in Taiwan follow the self-built green electronic-procurement (e-procurement) system. This requires professional personnel to take the time to regularly update the green specification and software and hardware of the e-procurement system, and the information system maintenance cost is high. In the case of a green e-procurement system crash, the efficiency of green procurement activities for hospitals is affected. If the green e-procurement can be moved to a convenient and trusty cloud computing model, this will enhance the efficiency of procurement activities and reduce the information maintenance cost for private hospitals. However, implementing a cloud model is an issue of technology innovation application and the technology-organization-environment (TOE) framework has been widely applied as the theoretical framework in technology innovation application. In addition, finding the weight of factors is a multi-criteria decision-making (MCDM) issue. Therefore, the present study first collected factors influencing implementation of the cloud mode together with the TOE as the theoretical framework, by reviewing the literature. Therefore, an expert questionnaire was designed and distributed to top managers of 20 private hospitals in southern Taiwan. The fuzzy analysis hierarchical process (FAHP), which is a MCDM tool, finds the weights of the factors influencing private hospitals in southern Taiwan when they implement a cloud green e-procurement system. The research results can enable private hospitals to successfully implement a green e-procurement system through a cloud model by optimizing resource allocation according to the weight of each factor. In addition, the results of this research can help cloud service providers of green e-procurement understand users’ needs and develop relevant cloud solutions and marketing strategies.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
45
References
3
Citations
NaN
KQI