Modeling Strain Distribution at the Atomic Level in Doped Ceria Films with Extended X-ray Absorption Fine Structure Spectroscopy

2019 
Ceria doped with trivalent dopants exhibits nonclassical electrostriction, strong anelasticity, and room-temperature (RT) mechanical creep. These phenomena, unexpected for a ceramic material with a large Young’s modulus, have been attributed to the generation of local strain in the vicinity of the host Ce cations due to symmetry-breaking point defects, including oxygen vacancies. However, understanding why strain is generated at the host rather than at the dopant site, as well as predicting these effects as a function of dopant size and concentration, remains a challenge. We have used the evolutionary-algorithm-based reverse Monte Carlo modeling to reconcile the experimental data of extended X-ray absorption fine structure and X-ray diffraction in a combined model structure. By extracting the details of the radial distribution function (RDF) around the host (Ce) and trivalent dopants (Sm or Y), we find that RDF of the first-nearest neighbor (1NN) of host and dopant cations as well as the second-nearest ne...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    20
    Citations
    NaN
    KQI
    []