Ontology Modelling for Lignocellulosic Biomass: Composition and Conversion. Comput-Aided Chemical Engineering, 43, pp 1565-70

2018 
This paper presents an expansion of an already developed ontology BiOnto (Trokanas, Bussemaker, Velliou, Tokos, & Cecelja, 2015) and processing technology eSymbiosis ontology (Raafat, Trokanas, Cecelja, & Bimi, 2013) towards valorisation of lignocellulosic biomass. The ontology provides a reference model interpretable by humans and computers by further classifying and characterizing lignocellulosic biomass (LCB) in several ways, such as: lignin, hemicellulose and cellulose content, C5 and C6 composition, elemental composition, and heat value. Similarly, LCB processing technologies are classified and characterised based on the input of LCB components, with related conversion rates of specific components. The combination of these classifications can elucidate additional information to assist in decision making for the ontology user. For example, the theoretical conversion rates of C5 and C6 polymeric sugars to ethanol are 0.5987 and 0.5679, then by employing the inference capabilities of the knowledge model, the user can gain insights into theoretical ethanol yields for various biomass types based on their C5 and C6 polymeric composition. This can also be applied to theoretical and actual yields of technologies modelled within the ontology, providing a useful reference tool for biorefinery development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []