Potential Neuroprotective Peptide Emerged from Dual Neurotherapeutic Targets: A Fusion Approach for the Development of Anti-Alzheimer’s Lead

2019 
Amyloid-beta (Aβ) peptide misfolds into fibrillary aggregates (β-sheet) and is deposited as amyloid plaques in the cellular environment, which severely damages intraneuronal connections leading to Alzheimer’s disease (AD) pathogenesis. Furthermore, neurons are rich in tubulin/microtubules, and the intracellular network of microtubules also gets disrupted by the accumulation of Aβ fiber in the brain. Hence, development of new potent molecules, which can simultaneously inhibit Aβ fibrillations and stabilize microtubules, is particularly needed for the efficient therapeutic application in AD. To address these issues, here we introduced an innovative fusion strategy to design and develop next generation anti-AD therapeutic leads. This unexplored fusion strategy entails design and development of a potent nonapeptide by taking into account both the hydrophobic core (17–21) of Aβ peptide and the taxol binding region of β-tubulin. In vitro results suggest that this newly designed peptide interacts at the taxol bi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    7
    Citations
    NaN
    KQI
    []