Thermally driven multi-layer actuator for 2D cantilever arrays

2011 
The present work reports on novel four-layer thermally driven piezoresistive cantilevers implemented in one- and two-dimensional arrays for parallel proximity scanning. There, the heater (metallic meander), the piezoresistive deflection sensor, and the metal actuation film with significantly higher thermal expansion coefficient make up separate layers. Actuation efficiency and cross-talk of the novel cantilever design are studied and compared with two recent designs: thin metallic film and ion-implanted heater. The novel actuator, integrated on a 240 μm long and 3 μm thick silicon cantilever and supplied by V dc=1 V enables deflections up to 5 μm of the AFM-tip with an actuation efficiency of about 170 nm/mW and suppressed cross-talk between actuator and sensor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    7
    Citations
    NaN
    KQI
    []