Origin of Hysteresis in Carbon Nanotube Field-Effect Transistors
2014
Carbon nanotube field effect transistors (CNT FETs) have many possible applications in future nano-electronics due to their excellent electrical properties. However, one of the major challenges regarding their performance is the noticeable gate hysteresis which is often displayed in their transfer characteristics. The hysteresis phenomenon is often attributed to water-mediated charge transfer between the CNT and the dielectric layer or the CNT and the water layer itself. In this study, we implement three different experimental techniques and provide evidence that the hysteresis phenomenon of suspended CNT FETs, as well as of on-surface CNT FETs which operate at low gate voltage regimes (∣Vg∣ < 3V), is based on gate-induced, water-assisted redistribution of mobile charge on the SiO2 surface, and it is not related to charge injection from the CNT itself. Two techniques are based on the current measurements through the CNT and the third utilizes electrostatic force microscopy (EFM) setup. In addition, the applied external gate voltage affect the relaxation time of the current. This change arises from the modification of the amount of water layers which adsorb onto the dielectric surface, which caused by dielectrophoresis attraction between the water molecules and the substrate. It is found that the relaxation time, and hence the surface conductivity, are very sensitive for the first few layers, and saturates above three monolayers of water molecules.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
27
References
1
Citations
NaN
KQI