Symmetry breaking of the surface mediated quantum Hall Effect in Bi 2 Se 3 nanoplates using Fe 3 O 4 substrates

2017 
Bi2Se3 nanoplate devices are synthesized on SiO2 and ferrimagnetic insulator substrates. We experimentally demonstrate that ferromagnetism is induced into the bottom surface. The symmetry broken bottom states give rise to an additional Shubnikov–de Haas frequency and leads to a decoupling of the top and bottom quantum Hall effects. We present a three-channel model that separates the bulk, top and bottom surface contributions to the Hall resistance, indicating the presence of two symmetry shifted half-integer QHEs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    10
    Citations
    NaN
    KQI
    []