Metrology Assessment of the Accuracy of Precipitable Water Vapor Estimates from GPS Data Acquisition in Tropical Areas: The Tahiti Case

2018 
High precision Global Positioning System (GPS) receivers, with the advantages of all-weather work and low cost, are now widely used to routinely monitor precipitable water (PW) vapor. They are so successful that the progressive phasing out of the costly and sparse in situ radio soundings (RS) is now a certainty. Nevertheless, the sub-daily to annual monitoring of high levels of the PW by GPS receivers in the tropics and the equatorial area still needs to be asserted in terms of metrology accuracy. This is the subject of this paper, which focuses on a tropical site located in mid-ocean (Tahiti). The metrology assessment was divided into two steps. Firstly, a GPS internal assessment, with an in-house processing based on the Bernese GNSS Software Version 5.2 and a comparison with the Center for Orbit Determination in Europe (CODE) products. Secondly, an external assessment, with a comparison with RS PW estimates. In contrast with previous works that only used PW estimates from the Integrated Global Radiosonde Archive (IGRA) website, we estimated the RS PW from the balloon raw data. This is especially important in tropical areas, where IGRA estimates only consider balloon measurements taken below approximately 5500 m. We show that, in our case, this threshold is one of the main sources of bias between GPS and RS estimates, and that the formula used to translate the GPS zenith wet delays (ZWD) to PW estimates also needs to be revisited for high level water vapor contents in the atmosphere.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    9
    Citations
    NaN
    KQI
    []