Ontogenetic difference of beak elemental concentration and its possible application in migration reconstruction for Ommastrephes bartramii in the North Pacific Ocean

2019 
The migration route of oceanic squid provides critical information for us to understand their spatial and temporal variations. Mark-recapture and electronic tags tend to be problematic during processing. Cephalopod hard structures such as the beak, containing abundant ecological information with stable morphology and statolith-like sequences of growth increments, may provide information for studying spatio-temporal distribution. In this study, we developed a method, which is based on elemental concentration of beaks at different ontogenetic stages and sampling locations, to reconstruct the squid migration route. We applied this method to Ommastrephes bartramii in the North Pacific Ocean. Nine trace elements were detected in the rostrum sagittal sections (RSS) of the beak using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For those elements, significant differences were found between the different ontogenetic stages for phosphorus (P), copper (Cu) and zinc (Zn). Sodium (Na), P and Zn were chosen as indicators of sea surface temperature (SST) and a regression model was estimated. The high probability of occurrence in a particular area represented the possible optimal squid location based on a Bayesian model. A reconstructed migration route in this study, combining all the locations at different ontogenetic stages, was consistent with that hypothesized in previous studies. This study demonstrates that the beak can provide useful information for identifying the migration routes of oceanic squid.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    2
    Citations
    NaN
    KQI
    []