Emergent honeycomb network of topological excitations in correlated charge density wave.

2019 
When two periodic potentials compete in materials, one may adopt the other, which straightforwardly generates topological defects. Of particular interest are domain walls in charge-, dipole-, and spin-ordered systems, which govern macroscopic properties and important functionality. However, detailed atomic and electronic structures of domain walls have often been uncertain and the microscopic mechanism of their functionality has been elusive. Here, we clarify the complete atomic and electronic structures of the domain wall network, a honeycomb network connected by Z3 vortices, in the nearly commensurate Mott charge-density wave (CDW) phase of 1T-TaS2. Scanning tunneling microscopy resolves characteristic charge orders within domain walls and their vortices. Density functional theory calculations disclose their unique atomic relaxations and the metallic in-gap states confined tightly therein. A generic theory is constructed, which connects this emergent honeycomb network of conducting electrons to the enhanced superconductivity. The detailed structures of domain walls are important to determine macroscopic properties in charge density wave materials. Here, Park et al. report atomic and electronic structures of a honeycomb domain wall network in 1T-TaS2, which may help understand the enhanced superconductivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    29
    Citations
    NaN
    KQI
    []