Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents.

1995 
1. The response properties of proprioceptive sensory neurons providing input to the local circuits controlling leg movements of the locust have been analysed by the Wiener kernel method. The proprioceptor, the femoral chordotonal organ, encodes the position and movements of the tibia about the femorotibial joint. 2. Intracellular recordings were made from sensory neurons while the apodeme of the organ was moved with a band-limited Gaussian white noise signal with a cutoff frequency of 27, 58, or 117 Hz. To define the input-output characteristics of the neurons, the first- and second-order Wiener kernels were computed by a cross-correlation between the spike response of the afferents and the white noise stimulus. 3. White noise stimulation elicited sustained spiking in 50 out of 54 afferents throughout the 20 s periods of stimulation and recording. The first-order kernels, the linear response properties, of these afferents were of six basic types that were dependent on the cutoff frequency of the white noi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    29
    Citations
    NaN
    KQI
    []