Timely gene detection assay and reliable screening of genetically engineered plants using an improved direct PCR-based technology.

2021 
Engineered plants have been widely produced for fundamental and practical use. Several methods have been developed for genetically modified crop detection and quantification; however; they still laborious and expensive. Efforts are needed to set-up diagnosis-oriented techniques as alternatives to overcome DNA extraction which remains a tedious and time-consuming procedure. Here, we established a standard direct PCR workflow using a regular Taq polymerase without prior DNA purification over a wide range of plant species. Only a small amount of fresh tissue allowed direct amplification of target gene sequences. Evaluation of accuracy, sensitivity, and reproducibility of direct PCR assay was investigated for proof-of-concept, and subsequently applied to gene detection assays and rapid transgenic revealing. The newly established method achieved full success and has amplified constitutive housekeeping genes from several plant specimens in a reproducible manner with high-quality sequencing profiles. In our case, the screening of transgenic plants confirmed that both the gfp-ER reporter gene and the npt II selectable marker were integrated into the plant genome. This direct PCR approach provides a powerful tool for large-scale PCR-based gene detection making DNA purification irrelevant. It could be easily implemented for downstream applications in the field of genetic fingerprinting, plant biotechnology, and functional genomics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    1
    Citations
    NaN
    KQI
    []