The Effects of Coexisting Copper, Iron, Cobalt, Nickel, and Zinc Ions on Gold Recovery by Enhanced Cementation via Galvanic Interactions between Zero-Valent Aluminum and Activated Carbon in Ammonium Thiosulfate Systems

2021 
The use of galvanic interactions between zero-valent aluminum (ZVAl) and activated carbon (AC) to recover gold (Au) ions is a promising technique to overcome the challenges due to the poor recovery in ammonium thiosulfate systems, but the applicability to practical Au ore processing remains elusive so far. The present study describes (1) the recovery of Au ions from low Au concentrations, which are typical concentrations used in Au ore processing; and (2) an investigation into the effects of various coexisting base metal ions that can be present in pregnant ore-leached solutions. The results showed that high Au recovery (i.e., over 85%) was obtained even at low Au concentrations under the following conditions: 1:1 of 0.15 g of ZVAl and AC with 10 mL of ammonium thiosulfate solution containing 5 mg/L of Au ions at 25 °C for 1 h in an anoxic atmosphere. Selected coexisting metal ions (i.e., copper, iron, cobalt, nickel, and zinc) were studied to establish their effects on Au recovery, and the results showed that the Au recovery was enhanced (about 90%) when copper ions coexist in the solution with minimal effects from other competing base metal ions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []