Squeezed light from a nanophotonic molecule.
2021
Delicate engineering of integrated nonlinear structures is required for developing scalable sources of non-classical light to be deployed in quantum information processing systems. In this work, we demonstrate a photonic molecule composed of two coupled microring resonators on an integrated nanophotonic chip, designed to generate strongly squeezed light uncontaminated by noise from unwanted parasitic nonlinear processes. By tuning the photonic molecule to selectively couple and thus hybridize only the modes involved in the unwanted processes, suppression of parasitic parametric fluorescence is accomplished. This strategy enables the use of microring resonators for the efficient generation of degenerate squeezed light: without it, simple single-resonator structures cannot avoid contamination from nonlinear noise without significantly compromising pump power efficiency. We use this device to generate 8(1) dB of broadband degenerate squeezed light on-chip, with 1.65(1) dB directly measured. Integrated sources of nonclassical light are a key component for scalable quantum technologies. Here, the authors work with two coupled microring resonators and show how to detune the resonances involved in unwanted parametric fluorescence, without significantly affecting the pump power efficiency.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
10
Citations
NaN
KQI