Measurements of nat Cd(γ, x) reaction cross-sections and isomer ratio of 115m,g Cd with the bremsstrahlung end-point energies of 50- and 60-MeV

2021 
The flux-weighted average cross sections of natCd(γ, xn)115g,m,111m,109,107,105,104Cd and natCd(γ, x)113g,112,111g,110mAg reactions were measured at the bremsstrahlung end-point energies of 50 and 60 MeV with the activation and off-line γ-ray spectrometric technique using the 100 MeV electron linac at the Pohang Accelerator Laboratory, Korea. The natCd(γ, xn) reaction cross sections as a function of photon energy were theoretically calculated using the TALYS-1.95 and the EMPIRE-3.2 malata codes. Then the flux-weighted average cross sections were obtained from the theoretical values of mono-energetic photons. These values were compared with the flux-weighted values of the present work and are found to be in general agreement. The measured experimental reaction cross-sections and integral yields are described for cadmium and silver isotopes in the natCd(γ, xn)115g,m,111m,109,107,105,104Cd and natCd(γ, x)113g,112,111g,110mAg reactions. The isomeric yield ratio (IR) of 115g,mCd in the natCd(γ, xn) reaction was also determined for above two bremsstrahlung end-point energies. The measured isomeric yield ratios of 115g,mCd in the natCd(γ, xn) reaction were also compared with the theoretical values of the nuclear model codes and the earlier published literature data in the 116Cd(γ,n) and 116Cd(n,2n) reactions. It was found that with the increase of projectile energy IR value increases, which demonstrate the characteristic of excitation energy. However, the higher IR value of 115g,mCd in the 116Cd(n,2n) reaction compared to the 116Cd(γ,n) reaction indicates the role of compound nuclear spin besides excitation energy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []