A bioengineered drug-Eluting scaffold accelerated cutaneous wound healing In diabetic mice

2016 
Abstract Hyperglycemia in diabetic patients can greatly hinder the wound healing process. In this study we investigated if the engagement of F4/80 + murine macrophages could accelerate the cutaneous wound healing in streptozotocin induced diabetic mice. To facilitate the engagement of macrophages, we engineered a drug-eluting electrospun scaffold with a payload of monocyte chemoattractant protein-1 (MCP-1). MCP-1 could be readily released from the scaffold within 3 days. The electrospun scaffold showed no cytotoxic effects on human keratinocytes in vitro . Full-thickness excisional cutaneous wound was created in diabetic mice. The wound fully recovered within 10 days in mice treated with the drug-eluting scaffold. In contrast, the wound took 14 days to fully recover in control groups. The use of drug-eluting scaffold also improved the re-epithelialization. Furthermore, we observed a larger population of F4/80 + macrophages in the wound bed of mice treated with drug-eluting scaffolds on day 3. This marked increase of macrophages in the wound bed could have contributed to the accelerated wound healing. Our study shed new light on an immuno-engineering solution for wound healing management in diabetic patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    16
    Citations
    NaN
    KQI
    []