Helicity-dependent terahertz photocurrent and phonon dynamics in hybrid metal halide perovskites

2019 
We report the discovery of helicity-dependent ultrafast photocurrent generation in organic-inorganic perovskite by measuring terahertz (THz) electric field emissions in the time-domain. We find signatures of the circular photogalvanic effect (CPGE) where right circularly polarized light and left circularly polarized light lead to different photocurrent generation. The direction of photocurrent is also resolved by measuring the polarization of the emitted THz pulses. Furthermore, we observe distinct wavelength-dependent, coherent phonon dynamics using THz pump-induced differential reflectivity, indicative of multiple exciton resonances. Both the CPGE and exciton fine structure, together with theoretical simulations, provide compelling and complementary evidence for the existence of Rashba-type bands in perovskite.We report the discovery of helicity-dependent ultrafast photocurrent generation in organic-inorganic perovskite by measuring terahertz (THz) electric field emissions in the time-domain. We find signatures of the circular photogalvanic effect (CPGE) where right circularly polarized light and left circularly polarized light lead to different photocurrent generation. The direction of photocurrent is also resolved by measuring the polarization of the emitted THz pulses. Furthermore, we observe distinct wavelength-dependent, coherent phonon dynamics using THz pump-induced differential reflectivity, indicative of multiple exciton resonances. Both the CPGE and exciton fine structure, together with theoretical simulations, provide compelling and complementary evidence for the existence of Rashba-type bands in perovskite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    13
    Citations
    NaN
    KQI
    []