Distance-Based Radio Resource Allocation for Device to Device Communications

2017 
Device-to-Device (D2D) communications can increase the spectral efficiency of future cellular networks when sharing part of the cellular spectrum. Radio resource allocation mechanisms are then necessary to control the interference that D2D and cellular transmissions can generate to each other. Most of the existing allocation schemes rely on the knowledge of the channel gain of all possible links between cellular and D2D nodes. This paper proposes to reduce the complexity cost and signalling overhead of the allocation process by using location information available at the network level. Using this information, the base station assigns radio resources to new D2D transmissions with the objective to control and limit the interference to the primary cellular users and existing D2D transmissions. The proposed radio resource allocation scheme continuously monitors that the user QoS requirements are satisfied. If it is not the case, it dynamically modifies the resource allocation to the interfering D2D transmissions. The proposed scheme achieves performance levels similar to that obtained with an optimized centralized allocation scheme, but with a significantly lower complexity cost and signaling overhead.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    5
    Citations
    NaN
    KQI
    []