Dermal exposure to cobalt studied in vitro in keratinocytes - effects of cobalt exposure on inflammasome activated cytokines, and mRNA response.

2021 
BACKGROUND Cobalt is a dermal sensitizer, and keratinocytes respond to cobalt exposure by releasing proinflammatory mediators, regulating the immune response. OBJECTIVE To determine the effect of cobalt on the inflammasome associated cytokine- and gene expression in cultured human keratinocytes (HaCaT). Cultivation in low- or high calcium conditions model separate differentiation states of keratinocytes in the skin. METHOD HaCaT cells in two different states of differentiation were exposed to cobalt chloride and caspase-1 activity as well as the production of IL-1β, IL-18 and gene expression of IL1B, IL18, NLRP3, CASP1, and PYCARD was quantified. RESULTS High cobalt chloride exposure mediated significant increase in caspase-1 activity, cytokine levels, and IL1B and NLRP3 expression with a corresponding regulatory decrease for CASP1 and PYCARD expression. No difference between high- and low calcium culturing conditions modelling differentiation states was detected. CONCLUSIONS Our data suggest that HaCaT cells respond with inflammmasome associated activity upon cobalt exposure in a concentration-dependent manner. These mechanisms could be of importance for the understanding of the pathophysiology behind allergic sensitization to dermal cobalt exposure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []