Highly efficient degradation of 2,2′,4,4′-tetrabromodiphenyl ether through combining surfactant-assisted Zn0 reduction with subsequent Fenton oxidation

2019 
Abstract 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) was difficult to be rapidly degraded by common reductive debromination or oxidative decomposition. In this study, the debromination via surfactant-assisted zero valent zinc (Zn0) reduction and subsequent Fenton oxidation was combined to completely degrade BDE47. Firstly, Zn0 integrated with surfactants including cetyltrimethylammonium chloride (CTAC), polyethylene glycol dodecyl ether (Brij35), or 1-dodecanesulfonic acid sodium salt (SDS) were evaluated for their reactivity to debrominate BDE47. CTAC-assisted Zn0 system presented the highest removal efficiency of 98.6% for BDE47 (C0 = 5 mg/L) under the optimized conditions including 0.3 g/L of Zn0 particles and 0.05 g/L of CTAC at 25 °C and pH 4.0 during 1-h reaction. Subsequently, the debromination products as low-brominated BDEs were attacked by hydroxyl radicals (•OH) from Fenton reagent, which were decomposed into short-chain carboxylic acids and even mineralized within 2-h oxidation. In addition, HPLC, GC–MS, LC–MS/MS, and IC were employed to detect intermediates during this reaction/oxidation process and the pathways of debromination and oxidation were proposed according to carbon and bromine balance. The above combination achieved the complete degradation of BDE47 via a relative low-cost method to rapidly remove PBDEs, which provide a new approach for the effective treatment of halogenated organic pollutants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    2
    Citations
    NaN
    KQI
    []