Mice heterozygous for neurotrophin-3 display enhanced vulnerability to excitotoxicity in the striatum through increased expression of N-methyl-d-aspartate receptors

2007 
Abstract The striatum is one of the brain areas most vulnerable to excitotoxicity, a lesion that can be prevented by neurotrophins. In the present study, intrastriatal injection of the N -methyl- d -aspartate receptor (NMDAR) agonist quinolinate (QUIN) was performed in mice heterozygous for neurotrophin-3 (NT3 +/−) or brain-derived neurotrophic factor (BDNF +/−) to analyze the role of endogenous neurotrophins on the regulation of striatal neurons susceptibility to excitotoxic injury. QUIN injection induced a decrease in dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa (DARPP-32) protein levels that was higher in NT-3 +/− than in BDNF+/− or wild type animals. This enhanced susceptibility was specific for enkephalin- and tachykinin-positive projection neurons, and also for parvalbumin-positive interneurons. However the excitotoxic damage in large interneurons was not modified in NT-3 +/− mice compared with wild type animals. This effect can be related to the regulation of NMDARs by endogenous NT-3. Thus, our results show that there is an age-dependent regulation of NMDAR subunits NR1 and NR2A, but not NR2B, in NT-3 +/− mice. The deficit of endogenous NT-3 induced a decrease in NR1 and NR2A subunits at postnatal day (P) 0 and P3 mice respectively, whereas an upregulation was observed in 12 week old NT-3 +/− mice. This differential effect was also observed after administration of exogenous NT-3. In primary striatal cultures, NT-3 treatment induced an enhancement in NR2A, but not NR2B, protein levels. However, intrastriatal grafting of NT-3 secreting-cells in adult wild type mice produced a down-regulation of NR2A subunit. In conclusion, NT-3 regulates the expression of NMDAR subunits modifying striatal neuronal properties that confers the differential vulnerability to excitotoxicity in projection neurons and interneurons in the striatum.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    15
    Citations
    NaN
    KQI
    []